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Note

A note on distance matrices yielding elementary
landscapes for the TSP
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Symmetric and antisymmetric distance matrices in the single agent traveling salesman
problem (TSP) are not the only distance matrices to generate elementary landscapes for
“swap” and “2-opt” neighborhoods.
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In a TSP withn cities, there arén — 1)! possible tours and a tour’s cost is deter-
mined from then x n distance matriXD by

n
for) = Dixp.
i-1

The landscape determined by a neighborhoaod and distance matridD is the pair
(N, fp), wherefp denotes the vector of tour costs.

Let L be the(n—1)!x (n—1)! Laplacian determined by and letfp = fp—p where
j is a vector containing the mean valuefgfin each cell. A landscape @ementary if
fis an eigenvector of..

Limiting N to be either a swap or 2-opt neighborhood, Stadler [1] states that if
D is a symmetric or antisymmetric distance matrix then fp) is elementary. The
symmetric case is a special case of the more general results presented in Colletti and
Barnes [2].

Stadler [1] further claims the converse — if the landsc@pefp) is elementary for
swap or 2-opt neighborhoods, then the distance métrirust be either symmetric or
antisymmetric. As shown below, this latter claim is incorrect.

Define adeformation pair to beq, r € R" such that

Z%‘ +r, =0. (1)
i=1
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(Since setting-, to be the negative of the sum aify choice ofgq, ..., q,, r1, ..., Fa1
yields a(q, r) pair satisfying (1), infinitely many deformation pairs exist.)

Proposition 1. Let(q, r) be a deformation pair and define

q1 42 -+ qn rn rn - n

ql qz PR q r2 r2 PR r2
Q=1|. . " and R =

q1 42 -+ qn rn Fnp -+ Iy

If D yields an elementary landscape under neighborhépthen so doe® + Q + R.

Proof. If Q,R andD are as defined in the proposition, we only need to show that
fo = foro+r. Since anyQ + R satisfying (1) generates a constant TSP, fg.r = 0
(see [3]),fo = foiqir- O

Theorem 2. Distance matrices yielding elementary landscapes exist which are neither
symmetric nor antisymmetric.

Proof. LetSbe anysymmetric matrix with Sy ,_; # —1/2. Settingr; = 1, ¢, = —1,
r, =0fori > 1andg; = 0 fori < n yields a deformation pair, and asymmetric

1 ...1 0
O ... 0 -1

R+Q: . . . .
0 .- 0 -1

T = S+ R + Q is an asymmetric matrix yielding an elementary landscape. Showing
thatT is not antisymmetric completes the proof.
If T is antisymmetricTy,_1 = —7,_1.1, which implies

Stn1+1==811=-S1,1
so that
2‘S':I.,l’lfl + 1 = ov

contradicting the assumption th8f, 1 # —1/2. Therefore,T is a distance matrix
yielding an elementary landscape which is neither symmetric nor antisymmetricl

This research was supported by a grant from the Air Force Office of Scientific
Research. In a forthcoming paper we use the above construction as the basis of a com-
putationally efficient method of recognizing distance matrices which yield an elementary
landscape.
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