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Note

A note on distance matrices yielding elementary
landscapes for the TSP
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Symmetric and antisymmetric distance matrices in the single agent traveling salesman
problem (TSP) are not the only distance matrices to generate elementary landscapes for
“swap” and “2-opt” neighborhoods.
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In a TSP withn cities, there are(n − 1)! possible tours and a tour’s cost is deter-
mined from then× n distance matrixD by

fD(π) =
n∑
i=1

Di,π(i).

The landscape determined by a neighborhoodN and distance matrixD is the pair
(N, fD), wherefD denotes the vector of tour costs.

LetL be the(n−1)!×(n−1)! Laplacian determined byN and let̃fD = fD−µwhere
µ is a vector containing the mean value offD in each cell. A landscape iselementary if
f̃ is an eigenvector ofL.

Limiting N to be either a swap or 2-opt neighborhood, Stadler [1] states that if
D is a symmetric or antisymmetric distance matrix then(N, fD) is elementary. The
symmetric case is a special case of the more general results presented in Colletti and
Barnes [2].

Stadler [1] further claims the converse – if the landscape(N, fD) is elementary for
swap or 2-opt neighborhoods, then the distance matrixD must be either symmetric or
antisymmetric. As shown below, this latter claim is incorrect.

Define adeformation pair to beq, r ∈ Rn such that

n∑
i=1

qi + ri = 0. (1)
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(Since settingrn to be the negative of the sum ofany choice ofq1, . . . , qn, r1, . . . , rn−1

yields a(q, r) pair satisfying (1), infinitely many deformation pairs exist.)

Proposition 1. Let (q, r) be a deformation pair and define

Q =




q1 q2 · · · qn
q1 q2 · · · qn
...

...
. . .

...

q1 q2 · · · qn


 and R =




r1 r1 · · · r1
r2 r2 · · · r2
...

...
. . .

...

rn rn · · · rn


 .

If D yields an elementary landscape under neighborhoodN , then so doesD+Q+ R.

Proof. If Q,R and D are as defined in the proposition, we only need to show that
f̃D ≡ f̃D+Q+R. Since anyQ + R satisfying (1) generates a constant TSP, i.e.,f̃Q+R ≡ 0
(see [3]),̃fD ≡ f̃D+Q+R. �

Theorem 2. Distance matrices yielding elementary landscapes exist which are neither
symmetric nor antisymmetric.

Proof. Let S be anysymmetric matrix withS1,n−1 
= −1/2. Settingr1 = 1, qn = −1,
ri = 0 for i > 1 andqi = 0 for i < n yields a deformation pair, and asymmetric

R+Q =




1 · · · 1 0
0 · · · 0 −1
...

. . .
...

...

0 · · · 0 −1


 .

T = S + R + Q is an asymmetric matrix yielding an elementary landscape. Showing
thatT is not antisymmetric completes the proof.

If T is antisymmetric,T1,n−1 = −Tn−1,1, which implies

S1,n−1+ 1= −Sn−1,1 = −S1,n−1

so that

2S1,n−1 + 1= 0,

contradicting the assumption thatS1,n−1 
= −1/2. Therefore,T is a distance matrix
yielding an elementary landscape which is neither symmetric nor antisymmetric.�

This research was supported by a grant from the Air Force Office of Scientific
Research. In a forthcoming paper we use the above construction as the basis of a com-
putationally efficient method of recognizing distance matrices which yield an elementary
landscape.
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